Water Treatment

Water treatment is, collectively, the industrial-scale processes that makes water more acceptable for an end-use, which may be drinking, industry, or medicine. Water treatment is unlike small-scale water sterilization that campers and other people in wilderness areas practice. Water treatment should remove existing water contaminants or so reduce their concentration that their water becomes fit for its desired end-use, which may be safely returning used water to the environment.

Ultraviolet Water Purification

      Ultraviolet light is electromagnetic radiation with wavelengths shorter than visible light. UV can be separated into various ranges, with short range UV (UVC) considered “germicidal UV”. At certain wavelengths UV is mutagenic to bacteria, viruses and other micro-organisms. At a wavelength of 2,537 Angstroms (254 nm)[5] UV will break the molecular bonds within micro-organismal DNA, producing thymine dimers in their DNA thereby destroying them, rendering them harmless or prohibiting growth and reproduction. It is a process similar to the UV effect of longer wavelengths (UVB) on humans, such as sunburn or sun glare. Micro-organisms have less protection from UV and cannot survive prolonged exposure to it.

      A UVGI system is designed to expose environments such as water tanks, sealed rooms and forced air systems to germicidal UV. Exposure comes from germicidal lamps that emit germicidal UV electromagnetic radiation at the correct wavelength, thus irradiating the environment. The forced flow of air or water through this environment ensures the exposure.

      Sterilization is often misquoted as being achievable. While it is theoretically possible in a controlled environment, it is very difficult to prove and the term "disinfection" is used by companies offering this service as to avoid legal reprimand. Specialist companies will often advertise a certain log reduction i.e., 99.9999% effective, instead of sterilization. This takes into consideration a phenomenon known as light and dark repair (photoreactivation and base excision repair, respectively) in which the DNA in the bacterium will fix itself after being damaged by UV light. A separate problem that will affect UVGI is dust or other film coating the bulb, which can lower UV output. Therefore bulbs require annual replacement and scheduled cleaning to ensure effectiveness. The lifetime of germicidal UV bulbs varies depending on design. Also the material that the bulb is made of can absorb some of the germicidal rays. Lamp cooling under airflow can also lower UV output, thus care should be taken to shield lamps from direct airflow via parabolic reflector. Or add additional lamps to compensate for the cooling effect. Increases in effectiveness and UV intensity can be achieved by using reflection. Aluminum has the highest reflectivity rate versus other metals and is recommended when using UV.